Industrial Switches | Product Information

IE300 Series

Industrial Ethernet Layer 3 Switches

Allied Telesis ruggedized IE300 Industrial Ethernet switches provide enduring performance in harsh environments, such as those found in manufacturing, transportation and physical security. Offering high throughput, rich functionality and advanced security features, IE300 switches deliver the performance and reliability demanded by industrial deployments in the age of the Internet of Things (IoT).

Overview

Allied Telesis IE300 Series are a highperforming and feature-rich choice for today's networks. The IE300 are ideal for Industrial Ethernet applications, being qualified for manufacturing, roadway transportation (Traffic Control) and Smart Cities.

With a fanless design and a wide operating temperature range of -40°C to 75°C, they tolerate harsh and demanding environments, such as those found in industrial and outdoor deployment.

Network management

Allied Telesis Autonomous Management Framework™ (AMF) meets the increasing management requirements of today's modern converged networks, by automating many everyday tasks such as configuration management. AMF's powerful features allow an entire network to be easily managed as a single virtual device.

Vista Manager[™] EX is an intuitive visualization tool that complements the power of AMF. It allows users to monitor the network and quickly identify issues before they become major problems.

Securing the network edge

Ensuring data protection means controlling network access. Protocols such as IEEE 802.1X port-based authentication guarantee that only known users are connected to the network. Unknown users who physically connect can be segregated into a pre-determined part of the network. This offers network guests Internet access, while ensuring the integrity of private network data.

Gigabit and fast Ethernet support

The IE300 Series SFP ports support both gigabit and Fast Ethernet Small Form-Factor Pluggables (SFPs). This makes the IE300 Series ideal for environments where gigabit fiber switches will be phased in over time. This allows for connectivity to the legacy 100FX hardware until it is upgraded to gigabit Ethernet.

Support for both speeds of SFPs allows organizations to stay within budget as they migrate to faster technologies.

Network resiliency

The IE300 Series supports highly stable and reliable ICT network switching, with recovery times down to 50ms. The IE300 can be customized with the most appropriate mechanism and protocol to prevent network connection failure. Choices include Allied Telesis Ethernet Protection Switched Ring (EPSRing[™]), and the standards-based ITU-T G.8032.

Configurable power budget

On the PoE sourcing IE300 switches, you can configure both the overall power budget and the power feeding limit on a per-port basis, to establish a close relationship between the power sourcing feature and the real capabilities of the external Power Supply Unit (PSU).¹

Future-proof

The IE300 Series ensures a futureproof network with a comprehensive feature set, and are Software Defined Networking (SDN) ready supporting OpenFlow v1.3.

Allied Telesis

POE plus

Allied Ware Plus" OPERATING SYSTEM

Key Features

- ► AlliedWare Plus[™] functionality
- Allied Telesis Autonomous Management Framework™ (AMF) node
- OpenFlow for SDN
- Routing capability (ECMP, OSPF, RIP, Static and BGP)
- ► Active Fiber MonitoringTM (AFM)
- Industrial automation protocol support (Modbus/TCP)
- Ethernet Protection Switched Ring (EPSRing™)
- Ethernet Ring Protection Switching (ITU-T G.8032)
- Upstream Forwarding Only (UFO)
- Precise time synchronization with sub-microsecond resolution (IEEE 1588 PTP)
- ▶ IEEE 802.3at PoE+ sourcing (30W)
- ▶ Hi-PoE sourcing (60W)²
- Continuous PoE
- ► Enhanced Thermal Shutdown
- ► Redundant power inputs
- Alarm input/output
- Fanless design

¹ Power supply must be compliant with local/national safety and electrical code requirements. Select the supply with the most appropriated output power derating curve.

²Hi-PoE is a proprietary implementation of 4-pair PoE

Key Details

Allied Telesis Autonomous Management Framework (AMF)

- AMF is a sophisticated suite of management tools that provide a simplified approach to network management. Common tasks are automated or made so simple that the every-day running of a network can be achieved without the need for highly-trained, and expensive, network engineers. Powerful features like centralized management, auto-backup, auto-upgrade, auto-provisioning and auto-recovery enable plug-and-play networking and zero-touch management.
- AMF secure mode encrypts all AMF traffic, provides unit and user authorization, and monitors network access to greatly enhance network security.

Software Defined Networking (SDN)

 OpenFlow is a key technology that enables the use of SDN to build smart applications that unlock value and reduce cost.

ICT Networks Resiliency

- ► EPSRing[™] and ITU-T G.8032 enable a protected ring capable of recovery within as little as 50ms. These features are perfect for high performance and high availability.
- Spanning Tree Protocol compatible, RSTP; MSTP; static Link Aggregation Group (LAG), and dynamic Link Aggregation Control Protocol (LACP) support.

Quality of Service (QoS)

Comprehensive low-latency wire-speed QoS provides flow-based traffic management with full classification, prioritization, traffic shaping and min/max bandwidth profiles. Enjoy boosted network performance and guaranteed delivery of business-critical Ethernet services and applications. Time-critical services such as voice and video take precedence over non-essential services such as file downloads, maintaining responsiveness of your applications.

sFlow

SFlow is an industry standard technology for monitoring high speed switched networks. It provides complete visibility into network use, enabling performance optimization, usage accounting/billing, and defense against security threats. Sampled packets sent to a collector ensure it always has a real-time view of network traffic.

Active Fiber Monitoring

Active Fiber Monitoring prevents eavesdropping on fiber communications by monitoring received optical power. If an intrusion is detected, the link can be automatically shut down, or an operator alert can be sent.

VLAN Mirroring (RSPAN)

VLAN mirroring allows traffic from a port on a remote switch to be analyzed locally. Traffic being transmitted or received on the port is duplicated and sent across the network on a special VLAN.

Link Layer Discovery Protocol – Media Endpoint Discovery (LLDP – MED)

 LLDP-MED extends LLDP basic network endpoint discovery and management functions. LLDP-MED allows for media endpoint specific messages, providing detailed information on power equipments, network policy, location discovery (for Emergency Call Services) and inventory.

VLAN Translation

- VLAN Translation allows traffic arriving on a VLAN to be mapped to a different VLAN on the outgoing paired interface.
- In Metro networks, it is common for a network Service Provider (SP) to give each customer their own unique VLAN, yet at the customer location give all customers the same VLAN-ID for tagged packets to use on the wire. SPs can use VLAN Translation to change the tagged packet's VLAN-ID at the customer location to the VLAN-ID for tagged packets to use within the SP's network.
- This feature is also useful in Enterprise environments where it can be used to merge two networks together, without manually reconfiguring the VLAN numbering scheme. This situation can occur if two companies have merged and the same VLAN-ID is used for two different purposes.

VLAN ACLs

 Simplify access and traffic control across entire segments of the network. Access Control Lists (ACLs) can be applied to a Virtual LAN (VLAN) as well as a specific port.

Security (Tri-Authentication)

Authentication options on the IE300 Series also include alternatives to IEEE 802.1X port-based authentication, such as web authentication, to enable guest access and MAC authentication for endpoints that do not have an IEEE 802.1X supplicant. All three authentication methods— IEEE 802.1X, MAC-based and Web-based—can be enabled simultaneously on the same port for tri-authentication.

Upstream Forwarding Only (UFO)

 UFO lets you manage which ports in a VLAN can communicate with each other, and which only have upstream access to services, for secure multi-user deployment.

Dynamic Host Configuration Protocol (DHCP) Snooping

DHCP servers allocate IP addresses to clients, and the switch keeps a record of addresses issued on each port. IP source guard checks against this DHCP snooping database to ensure only clients with specific IP and/or MAC address can access the network. DHCP snooping can be combined with other features, like dynamic ARP inspection, to increase security in layer 2 switched environments, and also provides a traceable history, which meets the growing legal requirements placed on service providers.

Time synchronization with sub-microsecond precision (IEEE 1588 PTP)

Measurement and automation systems involving multiple devices often require accurate timing for event synchronization and data correlation. The IEEE 1588 Precise Time Protocol is a fault tolerant method of enabling clock synchronization in a distributed Ethernet network, and supports precise timing for automation applications and measurement systems.

The IE300 supports IEEE 1588-2008 (PTPv2) as Transparent Clock end-to-end mode, and performs an active role on Ethernet networks reducing the effects of Jitter.

PoE, PoE+ and Hi-PoE

- Each port supplies either 15.40W (PoE), or 30.00W (PoE+); four ports are configurable for Hi-PoE, which uses all four pairs in the cable to supply up to 60W. When supplying Hi-PoE, the IE300 supports both single signature and dual signature negotiation with power devices. This supports PTZ cameras with heater/blowers for outdoor applications, enhanced infrared lighting, lighting controller and LED lighting fixtures, remote Point of Sale (POS) kiosks, and other devices.
- The IE300 allows configuration of the overall power budget, as well as the power limit per port.

Continuous PoE

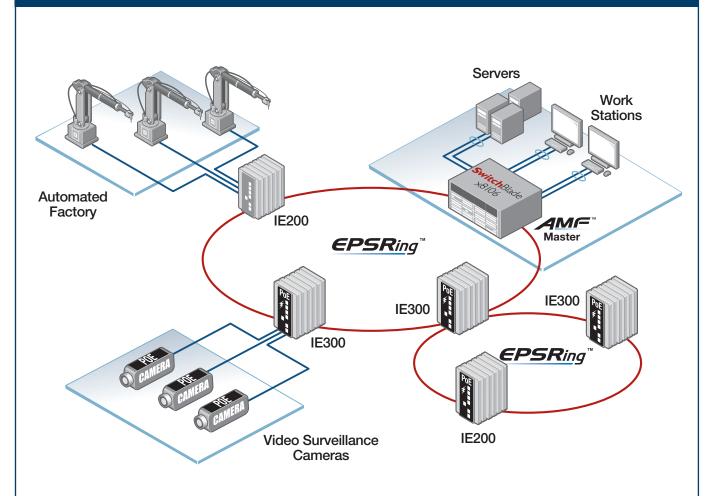
Continuous PoE allows the switch to be restarted without affecting the supply of power to connected devices. Smart lighting, security cameras, and other PoE devices will continue to operate during a software upgrade on the switch.

Industrial Automation

- Modbus/TCP is intended for supervision and control of automation equipment; that is a variant of the MODBUS protocol using the TCP/ IP for communications on Ethernet networks.
- Modbus/TCP supports read/write register access and heartbeats functions to enhance the efficiency of the process control for both SCADA and slave devices.

Alarm Input/Output

Alarm Input/Output is useful for security integration solutions to respond to events instantly, and automatically notify the monitoring control center. The 2-pin terminal blocks may be connected to sensors and actuator relays. Alarm Input receives signals from external devices like motion sensor and magnets that will trigger actions if something changes. Alarm output controls external devices upon an event (i.e. sirens, strobes, PTZ camera).


Enhanced Thermal Shutdown

The enhanced Thermal Shutdown feature acts to restrict PoE power and services when the switch exceeds the safe operating temperature. The system restores operation when the temperature returns to acceptable levels.

Premium Software License

The basic feature set can easily be upgraded with premium software licenses.

Key Solutions

EPSRing[™] and ITU-T G.8032 provide high speed resilient ring connectivity. This diagram shows the IE Series in a double ring network topology.

The IE Series operates at a large -40°C to +75°C temperature range and allows deployment in outdoor and harsh industrial environments.

PoE models feed 30 Watts per port, and support remotely controlled Pan, Tilt and Zoom (PTZ) video cameras.

The IE300 can source up to 60 Watts on four ports. The Hi-PoE utilizes all four pairs in the cable to provide power and expands the range of devices that can be added to the network, such as PTZ cameras with a heater/blower, enhanced infrared lighting, POS terminals, and thin client computer.

Management can be automated with the Allied Telesis Autonomous Management Framework[™] (AMF).

Specifications

PRODUCT	10/100/1000T (RJ-45) COPPER PORTS	100/1000X SFP PORTS	TOTAL PORTS	POE+ ENABLED PORTS	SWITCHING FABRIC	FORWARDING RATE
IE300-12GP	8	4	12	8	24Gbps	17.8Mpps
IE300-12GT	8	4	12	-	24Gbps	17.8Mpps

Performance

- ▶ RAM memory: 512MB DDR SDRAM
- ROM memory: 64MB flash
- MAC address: 16K entries
- Packet Buffer: 1.5 MBytes (12.2 Mbits)
- Priority Queues: 8
- ▶ Simultaneous VLANs: 4K
- VLANs ID range: 1 4094
- ▶ Jumbo frames: 9KB jumbo packets
- Multicast groups: 1,023 (Layer 2), or 512 (Layer 2) and 512 (Layer 3)²
- Other Interfaces

Type	Serial console (UART)
Port no.	1
Connector	RJ-45 female
Type	USB2.0 (Host Controller Class)
Port no.	1
Connector	Type A receptacle
Type	Alarm input (320µA @3.3Vdc)
Port no.	1
Connector	2-pin Terminal Block
Type	Alarm output (0.5A @30Vdc)
Port no.	1
Connector	2-pin Terminal Block
Type	Power Input
Port no.	2
Connector	2-pin Terminal Block

Reliability

▶ Modular AlliedWarePlus[™] operating system

- Redundant power input
- Full environmental monitoring of temperature and internal voltages. SNMP traps alert network managers in case of any failure
- Enhanced Thermal Shutdown

Flexibility and Compatibility

 Gigabit SFP ports supports any combination of Allied Telesis 10Mbps, 100Mbps and 1Gbps SFP modules listed in this document under Ordering Information

Industrial Automation

- ► IEEE 1588v2 1-step End-to-End Transparent Clock
- Modbus/TCP

Diagnostic Tools

- Active Fiber Monitoring detects tampering on optical links
- Automatic link flap detection and port shutdown
- Built-In Self Test (BIST)
- Cable fault locator (TDR)
- Connectivity Fault Management (CFM) Continuity Check Protocol (CCP) for use with G.8032 ERPS

²When PIM is enabled; see the Command Reference guide for recommended settings

- Event logging via Syslog over IPv4
- Find-me device locator

4 | IE300 Series

- Optical Digital Diagnostic Monitoring (DDM)
- Ping polling for IPv4 and IPv6
- Port and VLAN mirroring (RSPAN)
- TraceRoute for IPv4 and IPv6
- UniDirectional Link Detection (UDLD)

IPv4 Features

- Black hole routing
- Directed broadcast forwarding
- DHCP server and relay
- DNS relay
- ► Equal Cost Multi Path (ECMP) routing
- ▶ Route redistribution (OSPF, RIP, and BGP)
- Static unicast and multicast routes for IPv4
- ► UDP broadcast helper (IP helper)

IPv6 Features

- DHCPv6 server and relay
- Device management over IPv6 networks with SNMPv6, Telnetv6 and SSHv6
- IPv4 and IPv6 dual stack
- IPv6 hardware ACLs
- NTPv6 client and server
- Static unicast routing for IPv6

Management

- Front panel LEDs provide at-a-glance PSU status, PoE status, and fault information
- Allied Telesis Autonomous Management Framework (AMF) node
- Console management port on the front panel for ease of access
- Eco-friendly mode allows ports and LEDs to be disabled to save power
- Industry-standard CLI with context-sensitive help
- Powerful CLI scripting engine
- Built-in text editor
- Event-based triggers allow user-defined scripts to be executed upon selected system events
- SNMPv1/v2c/v3 support
- Comprehensive SNMP MIB support for standards based device management
- USB interface allows software release files, configurations and other files to be stored for backup and distribution to other devices
- Recessed Reset button

Quality of Service

- 8 priority queues with a hierarchy of high priority queues for real-time traffic, and mixed scheduling, for each switch port
- Extensive remarking capabilities
- ► IP precedence and DiffServ marking based on Layer 2, 3 and 4 headers
- ► Limit bandwidth per port or per traffic class down to 64kbps

617-000565 RevZC

- Policy-based QoS based on VLAN, port, MAC and general packet classifiers
- Policy-based storm protection
- Strict priority, weighted round robin or mixed scheduling
- ► Taildrop for queue congestion control
- Wirespeed traffic classification with low latency essential for VoIP and real-time streaming media applications

Resiliency Features

- Control Plane Prioritization (CPP) ensures the CPU always has sufficient bandwidth to process network control traffic
- Dynamic link failover (host attach)
- ► Ethernet Protection Switching Ring (EPSR) with SuperLoop Prevention (EPSR-SLP)
- ▶ Ethernet Ring Protection Switching (G.8032 ERPS)
- ► Loop protection: loop detection and thrash limiting
- ► PVST+ compatibility mode
- ► Router Redundancy Protocol (RRP) snooping
- ▶ Spanning Tree Protocol (STP) root guard

Security Features

- Access Control Lists (ACLs) based on layer 3 and 4 headers
- Access Control Lists (ACLs) for management traffic
- Authentication, Authorisation and Accounting (AAA)
- Auth fail and guest VLANs
- BPDU protection
- Bootloader can be password protected for device security
- DHCP snooping, IP source guard and Dynamic ARP Inspection (DAI)
- DoS attack blocking and virus throttling
- Dynamic VLAN assignment

Secure Copy (SCP)

IEEE 802.1X

OpenFlow v1.3 support

Operating temperature range:

Storage temperature range:

Operating humidity range: 5% to 95% non-condensing

-40°C to 75°C (-40°F to 167°F)

-40°C to 85°C (-40°F to 185°F)

►

- MAC address filtering and MAC address lock-down
- Network Access and Control (NAC) features manage endpoint security
- Port-based learn limits (intrusion detection)

Strong password security and encryption

TACACS+ authentication and accounting

Environmental Specifications

Tri-authentication: MAC-based, Web-based and

Software Defined Networking (SDN)

alliedtelesis.com

 Private VLANs provide security and port isolation for multiple customers using the same VLAN
 RADIUS local server (100 users) and accounting

IE300 Series | Industrial Ethernet, Layer 3 Switches

 Storage humidity range: 5% to 95% non-condensing Operating altitude: 3,000 meters maximum (9,843 ft) 	Electrical/Med Compliance Mark Safety	chanical Approvals CE, FCC EN/IEC/UL 60950-1 EN/IEC/UL 60950-22		EN61000-4-3 (RS) EN61000-4-4 (EFT) EN61000-4-5 (Surge) EN61000-4-6 (CS) EN61000-4-8
Mechanical EN 50022, EN 60715 Standardized mounting on rails 		CAN/CSA-22.2 no. 60950-1 CAN/CSA-22.2 no. 60950-22	Shock	EN61000-4-11 FCC Part 15B, Class A EN60068-2-27
Environmental Compliance • RoHS	EMC	CISPR 32 EN55024 EN55032 Class A EN61000-3-2	Vibration	EN60068-2-31 EN60068-2-6
China RoHSWEEE		EN61000-3-3 EN61000-4-2 (ESD)	Traffic Control	NEMA TS2

Physical Specifications

PRODUCT	WIDTH	DEPTH	HEIGHT	WEIGHT	ENCLOSURE	MOUNTING	PROTECTION RATE
IE300-12GP	146 mm (5.75 in)	127 mm (5.00 in)	152 mm (6.00 in)	2.0 kg (4.5 lb)	Aluminum shell	DIN rail, wall mount	IP30
IE300-12GT	146 mm (5.75 in)	127 mm (5.00 in)	152 mm (6.00 in)	2.0 kg (4.4 lb)	Aluminum shell	DIN rail, wall mount	IP30

Power Characteristics

			NO POE LOAD		FULL POE LOAD***			MAX POE	MAX POE SOURCING PORTS			
PRODUCT INPUT VOL	INPUT VOLTAGE	COOLING	MAX POWER CONSUMPTION	MAX HEAT DISSIPATION	NOISE	MAX POWER CONSUMPTION	MAX HEAT DISSIPATION	NOISE	POWER	P0E (15W)	P0E+ (30W)	HI-POE (60W)
IE300-12GP	48V DC *, 53.5V DC **	fanless	30W	102 BTU/hr	-	320W	147 BTU/hr	-	240W	8	8	4
IE300-12GT	12~55V DC	fanless	30W	102 BTU/hr	-	-	-	-	-	-	-	-

sourcing IEEE 802.3at Type 1 (PoE)

** sourcing IEEE 802.3at Type 2 (PoE+, Hi-PoE)

*** The Max Power consumption at full PoE load includes PD's consumption and margin. The cooling requirements of the switch are smaller than the power draw, because most of the load is dissipated at the PoE powered device (PD) and along the cabling.

Use these wattage and BTU ratings for facility capacity planning.

Standards and Protocols

AlliedWare Plus Operating System Version 5.5.0

Authentication

RFC 1321 MD5 Message-Digest algorithm RFC 1828 IP authentication using keyed MD5

Automation

Modbus/TCP IEEE 1588-2008 Precision Clock Synchronization Protocol v2

Border Gateway Protocol (BGP)

BGP	dynamic	capability
-----	---------	------------

nd route filtering
Application of the Border Gateway Protocol
(BGP) in the Internet
BGP communities attribute
BGP route flap damping
Use of BGP-4 multiprotocol extensions for IPv6
inter-domain routing
Route refresh capability for BGP-4
Configuring BGP to block Denial-of-Service
(DoS) attacks
Border Gateway Protocol 4 (BGP-4)
BGP extended communities
BGP route reflection - an alternative to full
mesh iBGP
BGP graceful restart
Multiprotocol Extensions for BGP-4
Autonomous system confederations for BGP

RFC 5492 Capabilities Advertisement with BGP-4

RFC 5925 The TCP Authentication Option RFC 6793 BGP Support for Four-Octet Autonomous System (AS) Number Space RFC 7606 Revised Error Handling for BGP UPDATE messages

Encryption (management traffic only)

FIPS 180-1 Secure Hash standard (SHA-1) FIPS 186 Digital signature standard (RSA) FIPS 46-3 Data Encryption Standard (DES and 3DES)

Ethernet

IEEE 802.2 Logical Link Control (LLC) IEEE 802.3 Ethernet IEEE 802.3ab1000BASE-T IEEE 802.3af Power over Ethernet (PoE) IEEE 802.3at Power over Ethernet up to 30W (PoE+) IEEE 802.3az Energy Efficient Ethernet (EEE) IEEE 802.3u 100BASE-X IEEE 802.3x Flow control - full-duplex operation IEEE 802.3z 1000BASE-X **IPv4** Features

RFC 768	User Datagram Protocol (UDP)
RFC 791	Internet Protocol (IP)

- RFC 792 Internet Control Message Protocol (ICMP)
- RFC 793 Transmission Control Protocol (TCP)
- Address Resolution Protocol (ARP) RFC 826
- RFC 894 Standard for the transmission of IP datagrams over Ethernet networks
- RFC 919 Broadcasting Internet datagrams

Latency (microseconds)

PRODUCT	PORT SPEED						
PRODUCI	10MBPS	100MBPS	1000MBPS				
IE300-12GP	54µs	7.9µs	3.4µs				
IE300-12GT	54µs	7.9µs	3.4µs				

RFC 922	Broadcasting Internet datagrams in the presence of subnets
	P
RFC 932	Subnetwork addressing scheme
RFC 950	Internet standard subnetting procedure
RFC 951	Bootstrap Protocol (BootP)
RFC 1027	Proxy ARP
RFC 1035	DNS client
RFC 1042	Standard for the transmission of IP datagrams over IEEE 802 networks
RFC 1071	Computing the Internet checksum
RFC 1122	Internet host requirements
RFC 1191	Path MTU discovery
RFC 1256	ICMP router discovery messages
RFC 1518	An architecture for IP address allocation with CIDR
RFC 1519	Classless Inter-Domain Routing (CIDR)
RFC 1542	Clarifications and extensions for BootP
RFC 1591	Domain Name System (DNS)
RFC 1812	Requirements for IPv4 routers
RFC 1918	IP addressing
RFC 2581	TCP congestion control
	.
IPv6 Fea	atures
RFC 1981	Path MTU discovery for IPv6
RFC 2460	IPv6 specification
RFC 2464	Transmission of IPv6 packets over Ethernet

RFC 2464 Transmission of IPv6 packets over Ethernet

	networks
DE0 0 40 4	

- RFC 3484 Default address selection for IPv6
- RFC 3587 IPv6 global unicast address format RFC 3596
- DNS extensions to support IPv6 RFC 4007 IPv6 scoped address architecture

IE300 Series | Industrial Ethernet, Layer 3 Switches

RFC 4193	Unique local IPv6 unicast addresses
RFC 4213	Transition mechanisms for IPv6 hosts and
	routers
RFC 4291	IPv6 addressing architecture
RFC 4443	Internet Control Message Protocol (ICMPv6)
RFC 4861	Neighbor discovery for IPv6
RFC 4862	IPv6 Stateless Address Auto-Configuration
RFC 5014	(SLAAC) IPv6 socket API for source address selection
RFC 5014	Deprecation of type 0 routing headers in IPv6
RFC 5175	IPv6 Router Advertisement (RA) flags option
RFC 6105	IPv6 Router Advertisement (RA) guard
Manage	ment
AT Enterprise	MIB including AMF MIB and traps
Optical DDM	MIB
SNMPv1, v2	
	BLink Layer Discovery Protocol (LLDP)
RFC 1155	Structure and identification of management
DE0 4457	information for TCP/IP-based Internets
RFC 1157 RFC 1212	Simple Network Management Protocol (SNMP) Concise MIB definitions
RFC 1212 RFC 1213	MIB for network management of TCP/IP-based
111 0 12 10	Internets: MIB-II
RFC 1215	Convention for defining traps for use with the
	SNMP
RFC 1227	SNMP MUX protocol and MIB
RFC 1239	Standard MIB
RFC 1724	RIPv2 MIB extension
RFC 2578	Structure of Management Information v2
	(SMIv2)
RFC 2579	Textual conventions for SMIv2
RFC 2580 RFC 2674	Conformance statements for SMIv2
RFC 2074	Definitions of managed objects for bridges with traffic classes, multicast filtering and VLAN
	extensions
RFC 2741	Agent extensibility (AgentX) protocol
RFC 2787	Definitions of managed objects for VRRP
RFC 2819	RMON MIB (groups 1,2,3 and 9)
RFC 2863	Interfaces group MIB
RFC 3176	sFlow: a method for monitoring traffic in
	switched and routed networks
RFC 3411	An architecture for describing SNMP
DE0 0 410	management frameworks
RFC 3412	Message processing and dispatching for the SNMP
RFC 3413	SNMP applications
RFC 3414	User-based Security Model (USM) for SNMPv3
RFC 3415	View-based Access Control Model (VACM) for
	SNMP
RFC 3416	Version 2 of the protocol operations for the
	SNMP
RFC 3417	Transport mappings for the SNMP
RFC 3418	MIB for SNMP
RFC 3621	Power over Ethernet (PoE) MIB
RFC 3635	Definitions of managed objects for the Ethernet-like interface types
RFC 3636	IEEE 802.3 MAU MIB
RFC 4022	MIB for the Transmission Control Protocol
THE TOLL	(TCP)
RFC 4113	MIB for the User Datagram Protocol (UDP)
RFC 4188	Definitions of managed objects for bridges
RFC 4292	IP forwarding table MIB
RFC 4293	MIB for the Internet Protocol (IP)
RFC 4318	Definitions of managed objects for bridges with
DE0 4500	RSTP
RFC 4560	Definitions of managed objects for remote ping, traceroute and lookup operations
RFC 5424	traceroute and lookup operations The Syslog protocol
RFC 5424 RFC 6527	Definitions of managed objects for VRRPv3

Multicast Support

Bootstrap Router (BSR) mechanism for PIM-SM IGMP query solicitation IGMP snooping (IGMPv1, v2 and v3) IGMP snooping fast-leave

	IGMP/MLD multicast forwarding (IGMP/MLD proxy)		
	LD snooping (MLDv1 and v2) M-SM and SSM for IPv6		
RFC 2236			
111 0 2200	(IGMPv2)		
RFC 2710	Multicast Listener Discovery (MLD) for IPv6		
RFC 2715	Interoperability rules for multicast routing protocols		
RFC 3306	Unicast-prefix-based IPv6 multicast addresses		
RFC 3376	IGMPv3		
RFC 3590	Source Address Selection for the Multicast		
	Listener Discovery (MLD) Protocol		
RFC 3810	Multicast Listener Discovery v2 (MLDv2) for IPv6		
RFC 3956	Embedding the Rendezvous Point (RP) address		
	in an IPv6 multicast address		
RFC 3973	PIM Dense Mode (DM)		
RFC 4541	IGMP and MLD snooping switches		
RFC 4604	Using IGMPv3 and MLDv2 for source-specific multicast		
RFC 4607	Source-specific multicast for IP		
RFC 7761	Protocol Independent Multicast - Sparse Mode		
	(PIM-SM): Protocol specification		
Open S	hortest Path First (OSPF)		
OSPF link-lo	ocal signaling		
OSPF MD5 authentication			

open Shortest Fath First (OSFT)		
OSPF link-loo	cal signaling	
OSPF MD5 a	uthentication	
OSPF restart	signaling	
Out-of-band	LSDB resync	
RFC 1245	OSPF protocol analysis	
RFC 1246	Experience with the OSPF protocol	
RFC 1370	Applicability statement for OSPF	
RFC 1765	OSPF database overflow	
RFC 2328	OSPFv2	
RFC 2370	OSPF opaque LSA option	
RFC 2740	OSPFv3 for IPv6	
RFC 3101	OSPF Not-So-Stubby Area (NSSA) option	
RFC 3509	Alternative implementations of OSPF area	
	border routers	
RFC 3623	Graceful OSPF restart	
RFC 3630	Traffic engineering extensions to OSPF	
RFC 4552	Authentication/confidentiality for OSPFv3	
RFC 5329	Traffic engineering extensions to OSPFv3	
RFC 5340	OSPFv3 for IPv6 (partial support)	

Quality of Service (QoS)

IEEE 802.1p	Priority tagging
RFC 2211	Specification of the controlled-load network
	element service
RFC 2474	DiffServ precedence for eight queues/port
RFC 2475	DiffServ architecture
RFC 2597	DiffServ Assured Forwarding (AF)
RFC 2697	A single-rate three-color marker
RFC 2698	A two-rate three-color marker
RFC 3246	DiffServ Expedited Forwarding (EF)
Resilien	cy Features

ITU-T G.8023 / Y.1344 Ethernet Ring Protection Switching (ERPS) IEEE 802.1ag CFM Continuity Check Protocol (CCP) IEEE 802.1AX Link aggregation (static and LACP) IEEE 802.1D MAC bridges IEEE 802.1s Multiple Spanning Tree Protocol (MSTP) IEEE 802.1w Rapid Spanning Tree Protocol (RSTP) IEEE 802.3adStatic and dynamic link aggregation RFC 5798 Virtual Router Redundancy Protocol version 3 (VRRPv3) for IPv4 and IPv6

Routing Information Protocol (RIP) RFC 1058 Routing Information Protocol (RIP)

RFC 1058	Routing Information Protocol (RIP)
RFC 2080	RIPng for IPv6
RFC 2081	RIPng protocol applicability statement

- RFC 2082 RIP-2 MD5 authentication
- RFC 2453 RIPv2

Security Features

Security	Features		
SSH remote	login		
SSLv2 and S	SLv3		
TACACS+ Ac	ACACS+ Accounting, Authentication, Authorization (AAA)		
	authentication protocols		
	(TLS, TTLS, PEAP and MD5)		
IEEE 802.1X			
IEEE 802.1X			
RFC 2818	HTTP over TLS ("HTTPS")		
RFC 2865	RADIUS authentication		
RFC 2866	RADIUS accounting		
RFC 2868	RADIUS attributes for tunnel protocol support		
RFC 2986	PKCS #10: certification request syntax		
	specification v1.7		
RFC 3579	RADIUS support for Extensible Authentication		
	Protocol (EAP)		
RFC 3580	IEEE 802.1x RADIUS usage guidelines		
RFC 3748	Extensible Authentication Protocol (EAP)		
RFC 4251	Secure Shell (SSHv2) protocol architecture		
RFC 4252	Secure Shell (SSHv2) authentication protocol		
RFC 4252	Secure Shell (SSHv2) transport layer protocol		
RFC 4254	Secure Shell (SSHv2) connection protocol		
RFC 5246	Transport Layer Security (TLS) v1.2		
RFC 5280	X.509 certificate and Certificate Revocation		
	List (CRL) profile		
RFC 5425	Transport Layer Security (TLS) transport		
	mapping for Syslog		
RFC 5656	Elliptic curve algorithm integration for SSH		
RFC 6125	Domain-based application service identity		
	within PKI using X.509 certificates with TLS		
RFC 6614	Transport Layer Security (TLS) encryption for		
111 0 0014	RADIUS		
RFC 6668			
RFC 0000	SHA-2 data integrity verification for SSH		
. .			
Services			
RFC 854	Telnet protocol specification		
RFC 855	Telnet option specifications		
RFC 857	Telnet echo option		
RFC 858	Telnet suppress go ahead option		
RFC 1091	Telnet terminal-type option		
RFC 1350	The TFTP protocol (revision 2)		
RFC 1985	SMTP service extension		
RFC 2049	MIME		
RFC 2131	DHCPv4 (server, relay and client)		
RFC 2132	DHCP options and BootP vendor extensions		
RFC 2616	Hypertext Transfer Protocol - HTTP/1.1		
RFC 2821	Simple Mail Transfer Protocol (SMTP)		
RFC 2822	Internet message format		
RFC 3046	DHCP relay agent information option (DHCP		
	option 82)		
RFC 3315	Dynamic Host Configuration Protocol for IPv6		
	(DHCPv6)		
RFC 3396	Encoding Long Options in the Dynamic Host		
10 0000	Configuration Protocol (DHCPv4)		
RFC 3633	IPv6 prefix options for DHCPv6		
RFC 3646	DNS configuration options for DHCPv6		
RFC 3993	Subscriber-ID suboption for DHCP relay agent		
	option		
RFC 4954	SMTP Service Extension for Authentication		
RFC 4954 RFC 5905			

VLAN Support

Generic VLAN Registration Protocol (GVRP) IEEE 802.1ad Provider bridges (VLAN stacking, Q-in-Q) IEEE 802.1Q Virtual LAN (VLAN) bridges IEEE 802.1v VLAN classification by protocol and port IEEE 802.3acVLAN tagging

Voice over IP (VoIP)

Voice VLAN

ANSI/TIA-1057 Link Layer Discovery Protocol-Media Endpoint Discovery (LLDP-MED)

Ordering Information

NAME	DESCRIPTION	INCLUDES
AT-FL-IE3-G8032	IE300 series license for ITU-T G.8032 and Ethernet CFM	ITU-T G.8032Ethernet CFM
AT-FL-IE3-L2-01	IE300 series Layer-2 Premium license	 EPSR Master VLAN Translation VLAN double tagging (QinQ) UDLD
AT-FL-IE3-L3-01	IE300 series Layer-3 Premium license	 OSPF (256 routes) OSPFv3 (256 routes) BGP4 (256 routes) BGP4+ for IPv6 (256 routes) PIM-SM, DM and SSM PIMv6-SM and SSM RIP RIP RIPng VRRP and VRRPv3
AT-FL-IE3-MODB	IE300 Series Modbus/TCP license	► Modbus/TCP
AT-FL-IE3-0F13-1YR	OpenFlow license	 OpenFlow v1.3 for 1 year
AT-FL-IE3-0F13-5YR	OpenFlow license	 OpenFlow v1.3 for 5 years

Switches

The DIN rail and wall mount kits are included.

AT-IE300-12GP-80

8x 10/100/1000T, 4x 100/1000X SFP, Industrial Ethernet, Layer 3 Switch, Hi-PoE Support

AT-IE300-12GT-80

8x 10/100/1000T, 4x 100/1000X SFP, Industrial Ethernet, Layer 3 Switch

Supported SFP Modules

Refer to the installation guide for the recommended Max. Operating Temperature according to the selected SFP module.

1000Mbps SFP Modules

AT-SPBD10-13 10 km, 1G BiDi SFP, LC, SMF (1310Tx/1490Rx)

AT-SPBD10-14 10 km, 1G BiDi SFP, LC, SMF (1490Tx/1310Rx)

AT-SPBD20-13/I 20 km, 1G BiDi SFP, SC, SMF, I-Temp (1310Tx/1490Rx)

AT-SPBD20-14/I 20 km, 1G BiDi SFP, SC, SMF, I-Temp (1490Tx/1310Rx) AT-SPBD20LC/I-13

20 km, 1G BiDi SFP, LC, SMF, I-Temp (1310Tx/1490Rx)

AT-SPBD20LC/I-14 20 km, 1G BiDi SFP, LC, SMF, I-Temp (1490Tx/1310Rx)

AT-SPEX 2 km, 1000EX SFP, LC, MMF, 1310 nm

AT-SPEX/E 2 km, 1000EX SFP, LC, MMF, 1310 nm, Ext. Temp

AT-SPLX10 10 km, 1000LX SFP, LC, SMF, 1310 nm

AT-SPLX10/I 10 km, 1000LX SFP, LC, SMF, 1310 nm, I-Temp

AT-SPLX10/E 10 km, 1000LX SFP, LC, SMF, 1310 nm, Ext. Temp

AT-SPLX40 40 km, 1000LX SFP, LC, SMF, 1310 nm

AT-SPLX40/E 40 km, 1000LX SFP, LC, SMF, 1310 nm, Ext. Temp

AT-SPSX 550 m, 1000SX SFP, LC, MMF, 850 nm

AT-SPSX/I 550 m, 1000SX SFP, LC, MMF, 850 nm, I-Temp

AT-SPSX/E 550 m, 1000SX SFP, LC, MMF, 850 nm, Ext. Temp AT-SPTX 100 m, 10/100/1000T SFP, RJ-45

AT-SPTX/I 100 m, 10/100/1000T SFP, RJ-45, I-Temp

AT-SPZX80 80 km, 1000ZX SFP, LC, SMF, 1550 nm

100Mbps SFP Modules

AT-SPFX/2 2 km, 100FX SFP, LC, MMF, 1310 nm

AT-SPFX/15 15 km, 100FX SFP, LC, SMF, 1310 nm

AT-SPFXBD-LC-13 15 km, 100FX BiDi SFP, LC, SMF (1310 Tx/1550 Rx)

AT-SPFXBD-LC-15 15 km, 100FX BiDi SFP, LC, SMF (1550 Rx/1310 Tx)

Accessories

AT-VT-Kit3 Management cable (USB to serial console)

Allied Telesis

NETWORK SMARTER

 North America Headquarters
 19800 North Creek Parkway
 Suite 100
 Bothell
 WA 98011
 USA
 T: +1 800 424 4284
 F: +1 425 481 3895

 Asia-Pacific Headquarters
 11 Tai Seng Link
 Singapore
 534182
 T: +65 6383 3832
 F: +65 6383 3830

 EMEA & CSA Operations
 Incheonweg 7
 1437 EK Rozenburg
 The Netherlands
 T: +31 20 7950020
 F: +31 20 7950021

alliedtelesis.com

© 2020 Allied Telesis, Inc. All rights reserved. Information in this document is subject to change without notice. All company names, logos, and product designs that are trademarks or registered trademarks are the property of their respective owners. 617-000565 RevZC